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Abstract

Vehicle manufacturers and governments across the U.S. employ various subsidies to
promote the adoption of electric vehicles (EVs). These subsidies develop networks of
EV charging stations and subsidize the price consumers pay for charging. However,
doing so sensibly is hampered by a poor understanding of EV drivers’ demand for
stations and charging. Using charging-session level data from the Evergy charging
network in Kansas City, at a time when there was a discrete end to a charging price
subsidy, I empirically analyze drivers’ charging behavior. I find driver charging
decreased 55% when the price subsidy ended, and station characteristics, such as
the type of business near a station, play an important role in driver demand for
stations. Counterfactual analysis indicates the charging price subsidy provided
$0.81 in value to drivers for every dollar spent on the subsidy and stations vary
significantly in the value they provide to drivers. These findings suggest the need
to account for the effects of station characteristics and charging price in future EV
subsidy programs.
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1 Introduction

Recent technological advances make electric vehicles (EVs) a plausible alternative to

gasoline vehicles and give them the potential to enable zero or low emission transporta-

tion. Improved batteries are cheaper and permit longer driving ranges making EVs more

attractive to consumers than in the past. By 2019, there were more than 43,000 charging

stations in the U.S. and EV sales had risen from just 17 thousand vehicles in 2011 to

more than 300 thousand annually.1 However, convenient EV charging continues to be a

pain point for EV adoption, as is seen in Hardman (2020).

Governments, utilities, and vehicle manufacturers across the U.S. have promoted the

adoption of EVs by subsidizing them in three ways. The first subsidizes the sale of EVs.

The federal government’s subsidizes EV sales up to $7,500 per vehicle and state and local

agencies provide additional subsidies for EV purchases.2 The second subsidizes building

new EV charging stations. Local governments, utilities, and vehicle manufacturers such

as Nissan, Tesla, and BMW have built many new EV charging station networks over

the last decade.3 The third subsidy makes charging free to drivers. Charging price

subsidies which make charging free have been implemented by a variety of localities,

utility providers, individual stores, and vehicle manufacturers such as Nissan, Tesla and

BMW.4

Understanding the how EV charging stations are utilized is crucial as EV adoption

grows. The effects of charging station characteristics and charging price subsidies on

driver charging decisions may have implications on what subsidies are implemented and

where new stations are located. Price and station characteristics such as the location

within a city, density of stations in an area, the number of ports at a station, and

1More information on charging stations and vehicle sales is found at https://afdc.energy.gov/st
ations/#/find/nearest and https://afdc.energy.gov/data/10567.

2Specifics on federal tax rebates are found at https://www.fueleconomy.gov/feg/taxevb.shtml.
3Additional local subsidy information is found at https://clippercreek.com/evse-rebates-an

d-tax-credits-by-state/.
4Vehicle manufacturer partnerships with EV charging networks specifics are found at https://www.

evgo.com/nissanenergyperks/, https://www.businessinsider.com/tesla-supercharger-netwo
rk-expansion-costs-8-billion-ubs-2017-3, and https://www.evgo.com/bmwcharging/.
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the type of business located near a station may significantly affect driver demand for

a station and lead to variation in how much stations are used. Of the 284 stations in

this analyses, 10 stations charged less than 70 KWHs in total over two years, with two

stations charging less than 3 KWHs. Concurrently, the top 25% of stations charged

more than 10,000 KWHs over same time frame. Station characteristics may affect how

much stations are used and the benefit they provide to drivers. Additionally, how drivers

respond to changing price subsidies may be key in reducing future congestion at charging

stations.

This paper uses unique transaction level charging data to explore how stations are

utilized by analyzing how station characteristics and charging price affect driver charging

decisions. My data, which is described in Section 2, allows me to observe every charging

transaction that occurs on the Evergy (a regional utility) charging network in Kansas

City. The 284 Evergy charging stations are located throughout the region and provide

a variety of charging characteristics to drivers. In the first year of the data, Evergy

subsidized charging to make it free for all drivers. In the second year of the data, the

subsidy ended at 70% of the stations, and I am able to observe how charging price and

characteristics affect driver behavior. I find that station characteristics as well as price

significantly affect driver charging decisions.

Like EVs, a robust network of gasoline stations was essential for the early adoption of

the gasoline vehicle, but EV charging differs from gasoline vehicle fueling in two important

ways.5 First, it takes 5-11 hours to fully charge an EV.6 A 2020 Tesla will only gain 2-3

miles of additional driving range for 5 minutes of charge, whereas a gasoline vehicle will

gain several hundred miles of range in the same time.7 Because of the time required for

charging, the characteristics that make EV stations convenient for drivers will likely be

different than gas stations. EV drivers may be more likely to charge at locations where

5Melaina (2007) discusses early gasoline stations in the U.S.
6More information on EV charging is found at https://chargehub.com/en/electric-car-char

ging-guide.html.
7Vehicle charging information can be found at https://insideevs.com/reviews/428113/tesla-m

odel-3-highway-range-test-70mph/ and https://evcharging.enelx.com/resources/blog/577-

how-long-does-it-take-to-charge-a-tesla.
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they are already spending time, such as work, grocery stores, and movie theaters and

may be less interested in charging at places they are driving past. Second, EV drivers

can charge at home. Provided a driver has the range to get home, they can choose to

charge their vehicle at home where the time required to charge may be less burdensome.8

The outside option of home charging further differentiates EVs from gasoline vehicles and

may change how drivers utilize charging stations and respond to changes in price.

Convenience of the charging locations may have a significant impact on how stations

are utilized and what locations provide the greatest value to drivers. EV drivers may con-

sider stations at their final destination most convenient, while charging at stations along

the driving route would require a significant increase in the commuting time. Drivers

seeking to charge at their end locations may place a higher importance on the businesses

around a station than drivers of gasoline vehicles.

In Section 3 I use differences-in-differences and synthetic control approaches to es-

timate how charging price and station characteristics affect station utilization using the

discrete end to the charging price subsidy. I find average station usage decreased 55%

when the charging subsidy ended. Additionally, the type of business near a station signifi-

cantly affected how much it was used, and how much charging decreased when the subsidy

ended. Stations located at work places, public parking garages, and when the charging

subsidy ended grocery stores are used most, but grocery station charging decreased more

than charging at stations located where people work.

In Section 4 I use a discrete choice approach to estimate the effects of station charac-

teristics and charging price on driver charging decisions. The estimates from this section

are used to perform counterfactual analysis in Section 5. The results show that station

characteristics and price play an important role in driver charging decisions. Station price

elasticity is affected by the type of business near a station with some stations being more

elastic to price than others. However, other location factors such as a station’s proximity

8EV vehicle range differs over time and is found at https://newmotion.com/en/knowledge-cente
r/news-and-updates/the-electric-range-of-an-ev.
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to downtown and a driver’s home location have a limited effect on charging decisions.

Section 5 uses the estimates from Section 4 to perform 2 counterfactuals. The first

counterfactual calculates the consumer surplus created by the charging price subsidy and

finds that fully subsidizing EV charging increases driver surplus by $0.81 for every dollar

spent on the subsidy. The second counterfactual calculates the value of each charging

station to EV drivers over 6 months. I find station’s value to drivers range from less

than a dollar to more than $600, but stations located near work, grocery, and shopping

locations are frequently valued more than stations near other types of locations.

These results have important policy implications and contribute to the existing lit-

erature on EV adoption. Previous economic literature on charging stations shows the

important effect EV stations have on EV adoption, but does not address differences in

station characteristics and charging price.9 Using data from the U.S. and Norway Springel

(2017) and Li et al. (2017) find that building stations is essential for EV adoption, but

subsidies for new stations are more effective than subsidies on vehicle purchases. However,

they do no differentiate stations by location, price, or characteristics. Understanding the

importance of stations Zhou and Li (2018) address issues around having charging sta-

tion critical mass for full EV adoption by looking at how increases in EV drivers affect

new station development, but they also assume demand and prices are identical across

stations.

This paper also complements the engineering literature on optimal station place-

ment. For example, Lam, Leung and Chu (2014); and Liu, Wen and Ledwich (2013) use

electrical grid data and population density to determine optimal locations for charging

stations.10 Greene et al. (2020) uses station-level data to assess the additional value a

station provides a driver based on their driving range and station location. While these

papers perform important technical analyses of the costs of building EV infrastructure,

9Sierzchula et al. (2014), Li (2017), Clinton and Steinberg (2019), Sheldon and DeShazo (2017),
DeShazo, Sheldon and Carson (2017), and Holtsmark and Skonhoft (2014) also discuss charging stations
and EV adoption.

10Cui, Weng and Tan (2019), He et al. (2013), Mehta et al. (2018), and He, Yin and Zhou (2015) also
discuss optimal station placement.
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they do not account for driver station preference. Straka et al. (2020) begins to address

this problem by using transaction-level charging data and neighborhood geospatial data

to predict station popularity based on neighborhood characteristics, but does not con-

sider station specific characteristics. This paper contributes to these groups of literature

by expanding our understanding of driver demand for charging accounting for station

price and characteristics.

The effects of price and station characteristics on driver charging behavior has im-

portant policy implications for how future subsidy programs are implemented and where

future charging stations are located. Understanding what station characteristics are val-

ued by drivers is crucial as EV charging networks continue to expand. Not accounting for

these important factors could lead to wasted resources on charging stations that are not

convenient for drivers and become underutilized. Additionally, understanding how drivers

responds to changes in price has implications for potential station capacity constraints

and the efficiency of future charging price subsidies.

2 Kansas City Charging Network

2.1 Electric Vehicles and the Kansas City Charging Network

The term EV commonly refers to three classes of vehicles with different needs for charging

stations. The first is the Hybrid Electric Vehicle (HEV), such as the Toyota Prius, which

has an internal combustion engine but use batteries to store energy generated while

driving.11 HEVs operate exclusively on gasoline, so for this paper, they are not considered

EVs because they do not plug in and charge. The second is the Plug-in Hybrid Electric

Vehicle (PHEV). They differ from HEVs in that they can plug-in and run exclusively on

electric power or use their internal combustion engine. PHEVs offer flexibility but have a

11More information on types of EVs can be found at https://afdc.energy.gov/vehicles/h

ow-do-hybrid-electric-cars-work, https://afdc.energy.gov/vehicles/electric.html,
https://www.evgo.com/why-evs/types-of-electric-vehicles/.
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limited driving range of 20 - 50 miles in their fully electric mode. The third is the Battery

Electric Vehicle (BEV). Like PHEVs, they plug in to charge, but they do not have an

internal combustion engine. BEVs are fully dependent on electric charge. However, they

have a longer driving range than the PHEV ranging between 80−350 miles.12

There are two types of public chargers that differ in the time required to charge

a vehicle. The more common Level 2 charger delivers 3-8 KWs per hour. Using a

level 2 charger fully charging an EV takes 5-11 hours, depending on its battery size and

vehicle type.13 These chargers cost $400-$6,500 including installation and are available

at 268 of the 284 locations in the data set. The less-common Level 3 charger (“Fast

Charger”) delivers 40-50 KWs per hour. Charging an EV to 80% takes 30-60 minutes,

but charging slows after the battery reaches 80%. These chargers cost between $10,000-

$40,000 including installation and are only available at 16 locations in this data set.14

Additionally, Level 3 chargers are incompatible with PHEVs, small battery BEVs, and

experience compatibility issues across vehicle makes.

For the purpose of this paper, a charging station is defined as one or more ports

at a single street address offering identical charging capability. For example, a group of

five Level 2 chargers in a parking lot is one station, and so is a single Level 2 charger

in a parking lot. However, Level 2 and Level 3 chargers located near each other are

considered different stations because they offer substantially different charging speeds.

This only occurs at 6 locations. Charging stations across the city offer drivers different

charging speeds, number of charging ports, and convenience.

In 2015, the regional utility, Evergy, subsidized the development of an EV charging

network around Kansas City, and made all charging free to drivers until January 1, 2018.

12Specifics on BEV range and qualities can be found at https://www.autoblog.com/2015/04/30/
2015-ev-range-per-dollar-ranking/ and https://newmotion.com/en/knowledge-center/news-a

nd-updates/the-electric-range-of-an-ev.
13More Level 2 charging information can be found at https://www.nrel.gov/docs/fy20osti

/77508.pdf, https://chargehub.com/en/electric-car-charging-guide.html, and https:

//afdc.energy.gov/files/u/publication/evse cost report 2015.pdf.
14Level 3 charging information can be found at https://afdc.energy.gov/files/u/publicatio

n/evse cost report 2015.pdf, https://chargehub.com/en/electric-car-charging-guide.html,
and https://chargehub.com/en/electric-car-charging-guide.html.
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The city-wide network has 284 charging locations at work places, grocery stores, shopping

malls, schools, and other public locations. When KCPL choose where to place the stations

in 2015 did not have any specific criteria for where stations were placed in the area or

the type of businesses near the stations. As a result, stations are located throughout the

Kansas City metro area at a variety of different types of locations. Stations are located

in both in both Kansas and Missouri, with a few stations extending north to the Iowa

state line and 100 miles south to Nevada, Missouri. Stations exist in both urban and

rural locations, but the majority of stations are located in the Kansas City metro area.

Evergy ended the charging subsidy on January 1, 2018, but the businesses located

near each station could choose to continue the subsidy themselves and keep charging

free at their station. Using the machine learning techniques discussed in Appendix A,

level 2 stations did not appear to have a clear systematic difference between stations that

remained free and those that became not free, but all level 3 stations became not free.

The price at Level 2 stations were the subsidy ended increased to an average of $0.15

per KWH in Kansas and $0.22 per KWH in Missouri and level 3 stations cost between

$0.28-0.33 per KWH. Overall, 89 station or 30% of all stations remained free in 2018.

When the subsidy ended, drivers could continue charging at stations that became not

free, switch to stations that remained free, or begin to charge outside the network such as

at home. All charging stations utilize the ChargePoint App so there is no technical barrier

for substitution between stations. Home charging can be done from a traditional wall

plug, but this takes a few days or weeks to fully charge a vehicle, but this can be made

more convenient by installing a Level 2 home charger which costs around $200-$2,000.15

In Kansas City the per KW cost of home charging is $.10-$.12 per KW versus the $.15-

$.22 per KW cost of level 2 charging on the Evergy network.16 Cheaper home charging

may have led more drivers to investing in home charging systems when the subsidy ended,

15More charging station cost specifics can be found at https://www.fixr.com/costs/home-electr
ic-vehicle-charging-station and https://www.edmunds.com/fuel-economy/the-true-cost-of-

powering-an-electric-car.html.
16Kansas and Missouri average residential electricity costs are found at https://www.electric

itylocal.com/states/kansas/ and https://www.electricitylocal.com/states/missouri/

respectively.
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which may made them less reliant on public charging as a whole. Unfortunately, I do not

have data on home charging.

For drivers who had the option of using gasoline, the end of the charging subsidy

could have caused them to substitute towards the use of a gasoline vehicle. However, it

typically costs less per mile to pay for EV charging than to buy gas. For example, the

2019 Fiat 500 comes as both a fully electric or fully gasoline vehicle. The fully electric

version requires 30 KWHs to travel 100 miles and the fully gasoline vehicle requires 3.7

gallons of gasoline.17 At a typical cost for public EV charging of $.22 per KWH and $2

per gallon of gas, 100 miles costs $6.60 for the EV and $7.40 for the gasoline vehicle.18

While the cost of charging increases when the subsidy ended, EV charging still costs less

than buying gasoline and with the switching costs associated with vehicles, it is unlikely

many drivers switched back to gasoline vehicles as a result of the end of the subsidy.

Instead, it is more likely drivers began charging at home.

Due to the time required to charge, the businesses near charging stations likely play

an important role in where drivers choose to charge. These factors may affect how much

stations are utilized, frequency of utilization, and the length of time drivers charge at a

station. A station located at a grocery store may provide a different service to drivers

than a station at school or work. Drivers may charge for several hours at work but only

a short time at a grocery store. It is crucial to account for the effect the business near a

station may have on driver charging decisions.

To better understand the effect of the type of business near a station may have on

usage, I categorized stations into eleven business categories using Google Maps location

information. Stations are categorized based on the businesses directly next to each station

as grocery, office work locations, industrial work location, parking garages, apartments,

hotels, shopping centers, medical facilities, schools, entertainment, or other. While the

stations in each group share common types of businesses, there are still regional and

17Specifics on the Fiat 500 can be found at https://www.fueleconomy.gov/feg/Find.do?action=
sbs&id=41143&id=41148

18Two dollars is used as a lower bound for the cost of gasoline.
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location-specific differences within groups.

The grocery station classification includes any station located near a Walmart, Sam’s

Club, or other grocery store. Some stations may have other shopping options nearby while

others may be a single grocery store. Work stations are located at corporate offices or

small firms for many different types of businesses. Industrial stations exist at any indus-

trial factory or service center, but most of the industrial stations are Evergy locations.

Parking garage stations are located at any public parking garage, and apartment stations

are located in apartment parking areas. Similarly, hotel stations offer charging to their

customers in hotel parking areas. Shopping locations are frequently located at shopping

malls, locations with a group of stores, or large single store. Medicine stations are lo-

cated at hospitals or doctors’ offices. Schools stations are at either K-12 schools or college

campuses. Entertainment stations are at outdoor entertainment areas such as parks or

indoor entertainment centers such as movie theaters or community recreation centers.

“Other” includes all stations that did not fit into any of the above categories, and mostly

consists of gas stations, airports, and stations without a clearly identified classification.

2.2 Data

This paper utilizes data from every charging session that occurred on the Evergy network

in 2017 and 2018. Each observation includes a unique station identifier, number of ports,

the type of port (Level 2 or Level 3), station location coordinates, charging start and end

date, driver id, price charged, and total KWHs charged. Using station coordinates I have

expanded station specific data to include station density, the distance from downtown,

distance to the nearest interstate, and the distance to the nearest station. When the

subsidy ended station price information is used to determine which stations remained

free and which stations became not free.

Unique driver ids and home zip codes are used to calculate the distance between the

center of a driver’s home zip code and each charging station. While the zip code does
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not give an exact location of the driver’s home, it generally indicates where a driver lives

relative to downtown and charging stations. Zip codes are also used to identify average

demographic characteristics for each driver such as population density and the average

income of their home zip code. The unique driver identifier lets me observe individual

charging behavior changes over time.

EV charging in Kansas City increased during 2017 and 2018, so, for the purpose of

observing driver charging behavior over time, only drivers who used the network before

May 2017 are included in the analysis. Similarly, I only include drivers who live within

100 miles of the Kansas City network so that changes in cross-country travel patterns do

not affect the analysis. As a result, this paper primarily applies to drivers living within

or near the Kansas City metro area.

For each charging transaction the data records the KWHs charged, the station id, the

driver id, the charging start and stop date, the charging duration, and the fee charged to

the driver. The fee and KWHs of every charging session are used to calculate the price per

KWH of charging. The station, individual, and record level data allows me to calculate

the total number of charges each driver makes, total usage per driver, the unique stations

each driver visited, and the frequency of driver visits at each station. This level of detail

allows me to observe every change in driver’s charging behavior including how charging

changes in 2018, what stations each driver leaves, and total charging usage.

Table 1 reports descriptive statistics between July 1, 2017 and June 30, 2018, re-

vealing differences in usage across drivers. On average, drivers charged 72 times over 12

months, but a quarter of drivers charged fewer than 10 times and the top quartile charged

more than 101 times. Similarly, the lowest quartile of drivers visited 3 or fewer unique

stations, while the highest quartile of drivers visited more than 10. 87% of charging

occurred within 20 miles of the driver’s home zip code, which suggests home charging

may be a viable substitute to charging on the network, because 20 miles does not exceed

the range of most EVs. Overall, charging is inexpensive, with more than half of charging

sessions costing less than $1.30 at stations that became not free in 2018.
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Usage also varies across stations. While price may cause variation in usage, the data

shows that differences in usage across stations occurred prior the end of the charging

price subsidy in 2017. Stations in the lowest quartile of usage experienced less than 25

KWHs of usage per port than the median port usage of 129 KWHs. The median port

usage is less than half of the 355 KWHs of usage at the 75th percentile, and the top

quartile of stations are used between 355 and 7,348 KWHs per port in the same time.

The variation in usage when all prices were equal supports the hypothesis that station

and location factors, and not just price, play an important role in understanding charging

station usage.

Table 2 shows station descriptive statistics for stations by business type classification.

This table includes 278 of the 284 stations, because the other 6 stations were not used

between July 2017 and June 2018. The total number of visits and KWHs vary some

by station type, but the standard errors are very large. There are some differences in

driver usage across business types such as the average length of each visit, the number of

unique drivers, and how frequently drivers visit a station. Grocery and shopping stations

have more unique drivers than other stations, but drivers visit them less frequently. In

contrast, work stations have fewer unique drivers, but much higher visit frequency. Straka

et al. (2020) use the number of unique drivers who visit a station as a measure of station

popularity, but this may leave out the important role different stations play for drivers

in the length of charge and frequency of visits. Stations used for long amounts of time

may provide different benefits to EV drivers then stations used by many for less time.

Simply looking at the number of unique users that visit a station may not capture the

true popularity of a station.

2.3 Changes in Usage From the End of the Charging Subsidy

As seen in Figure 1, charging on the network decreased when stations became not free

in 2018. The solid line shows usage for stations that become not free and the dotted line

shows total usage for stations that remain free in 2018. The vertical line indicates when
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the charging subsidy ended.19 It appears stations that remained free did not experience

the decrease in usage seen by stations that became not free.

Table 3 shows the average change in charging for stations that became not free and

stations that remained free. Stations that become not free experienced a statistically

significant drop in usage, a decrease in the number of unique drivers, and a decrease in

visit frequency. Concurrently, the end of the price subsidy did not have a significant

effect on usage for stations that remained free. Stations that remained free experienced

only a slight, not statistically significant increases in KWHs used when the subsidy ended.

There was a statistically significant increase in the length of charging sessions for stations

that remained free, but it is small. The limited increase in usage for stations that remain

free when the subsidy ends indicates movement from stations that became not free to

stations that remained free is probability limited.

Figure 2 shows the total change in usage by business type classifications and location.

While there are differences within business classification, there is some indication that

the business type may affect how much charging decreased after the subsidy ended. Work

station usage decreased 38.2%, but grocery and shopping station wage decreased almost

twice as much. The difference in the decrease for stations near downtown Kansas City

versus those further away is less. While this does not give a complete picture of the effect

of the type of business near a station and station location, it highlights some differences

which will be explored with analysis.

3 Empirical Analysis of Station Usage

This section explores how charging price and station characteristics affect station usage

using difference-in-difference and synthetic control approaches. Estimating how drivers

respond to changes in charging price cab be used to reduce station congestion through

pricing in the future. Similarly, better understanding of how station characteristics affect

19Driver frequency is calculated by the number of visits driver i makes at station j each year.
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where drivers choose to charge should inform future station development and placement.

Understanding the affects of station characteristics and price is crucial for future pricing

and the expansion of EV charging networks.

3.1 Difference-in-Difference

As seen in Figure 2, station usage across the network decreased after the charging subsidy

ended on January 1, 2018. In this section, I use a difference-in-difference approach to

estimate how station characteristics and the end of the charging subsidy affect station

usage using data from six months before and after the end of the subsidy. Stations that

remained free after the subsidy ended are distributed throughout the city (seen as stars

on the map in Figure 3) and serve as the control group. Stations that became not free

in 2018 are the treatment group (seen as black triangles in Figure 3). Charging in both

groups is observed in 2017 when charging was free at all stations and after the subsidy

ended when 70% of station become not free.

Using a difference-in-difference approach I estimate

ln(Usageit) = β0 + β1NOTFREEi + β2(NOTFREEi ×Tit) + β3Xi + λs + λm + ϵit, (1)

where Usageit is the average number of KWHs charged per port at station i in month t

plus one to account for stations with zero usage in some months. NOTFREE is a dummy

variable that indicates if the station is in the treatment group and becomes not free in

2018. NOTFREEi × Tit indicates station i is not free in time t and can be interpreted

as the difference-in-difference estimator. Xi are the station characteristics of station i.

λs are station fixed effects and λm are month fixed effects. ϵit is the error term and is

clustered by station.

Station characteristics include both the regional characteristics of the area where a

station is located and the characteristics at the station site. Characteristics of the area
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around a charging station include, population density of the zip code, the number of

EV drivers near the station, the distance from downtown, the distance to the nearest

interstate, and the density of charging stations. These are similar to the variables used in

Straka et al. (2020) and assume separate regions in a city have different levels of demand

for EV charging. Regional characteristics such as the distance to downtown Kansas City

and the distance to the nearest interstate could play an a role in how much stations are

used. The distance to downtown gives a measure of the urban nature of the station. The

distance to the nearest interstate is an indicator of how accessible a station is to drivers.

Other location factors include the demographics of the zip code where the station is

located including the population density, the number of registered EVs within 10 miles

of a station, and station density within 1 mile. These factors may affect variation around

the local area, but as EVs become prevalent, differences across demographic groups may

fade. Characteristics of the site where stations are located include the speed of charge

(Level 2 or Level 3) and the business type classification.

Table 4 presents the results from the difference-in-difference regression. Column

1 includes both month and station fixed effects along with the difference-in-difference

estimator NOTFREEi × Tit. Estimates from column 1 indicate stations that became

not free decreased usage by 55% when the charging subsidy ended. However, column

1 does not show the effect of station characteristics.20 Column 2 only includes regional

characteristics without accounting for station site characteristics, more similar to the

variables in Straka et al. (2020), but column 2 estimates of the difference-in-difference

estimator are similar to column 1.

Column 3 includes station site characteristics and driver density. Station business

classification variables are estimated relative to grocery stations. Grocery stations are

chosen as the reference due to their clear definition and high average use per station.

Column 3 shows a similar estimate of the difference-in-difference estimator as is in columns

1 and 2. On average, Level 2 stations have less usage relative to Level 3 stations, which is

20The percent decrease is calculated using (exp(β)−1)×100 as is specified in Halvorsen and Palmquist
(1980).
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likely due to the slower electricity transfer of Level 2 stations. Entertainment, apartment,

and hotel stations have the the largest negative effect on station usage relative to grocery

stations, which is significant. However, other stations such as work, shopping, medicine,

and parking garage station’s usage are not significantly different from grocery stations.

Figure 4 shows interactions of the difference-in-difference estimator NOTFREEi ×

Tit with business classification. The bars show the 95% confidence interval and ∗ indicates

statistical significance. Parking garage and work stations decrease on average 44% and

46% respectively and are statistically different from grocery and shopping stations which

decrease 65% and 62% respectively.21Due to the time required to charge, stations that

are less convenient may experience a larger decrease in usage than stations which are

more convenient. Differences across station business classification may affect the level of

convenience stations provide to drivers.

The difference-in-difference assumes the control group is a good proxy for the usage

of the treated stations had the subsidy not ended. This requires that there is not a

systematic difference in the trends of usage between stations that remained free and

those that became not free, and the end of the subsidy does not affect station usage

in the control group. While there does not appear to be a clear systematic difference

between stations that become not free and stations that remained free, I use machine

learning techniques to predict which stations will become not free using available station

data. The machine learning techniques were not able to predict which stations remained

free with a high degree of precision, but more discussion is found in Appendix A.

If drivers switched from stations that became not free to stations that remained free

when the subsidy ended it could affect the control group and cause bias in the estimate.

If this was the case, there should be an increase in charging at stations the remained free

in 2018. However, as is seen in Table 3, stations the remained free only experienced a

2.4%, not statistically significant, increase in KWH usage. While there are some small

21Grocery stations are not significantly different from shopping, but are significantly different from
work, parking, entertainment, and apartment stations.
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changes in the frequency of use and the number of unique drivers, the change in actual

usage for these stations is quite small. While 70% of the stations became not free, there

is only small and not statistically significant increase in usage at the 30% of stations that

remain free. This indicates there is not a significant amount of charging moving from

stations that became not free to stations that remained free, and the potential bias is

likely small. Appendix B has further discussion on the movement of charging between

stations.

3.2 Synthetic Control

For robustness, a synthetic control approach is used to complement the difference-in-

difference estimates. This approach is similar to a difference-in-difference in that it esti-

mates the effect of the subsidy on station usage by comparing treated station with other

stations in the area. However, the synthetic control does not require parallel trends of

the treated and control stations before the end of the subsidy. This mitigates potential

selection bias from underlying differences between treatment and control stations before

the subsidy ended.

The synthetic control is made up of a group of J control stations weighted by a J×1

vector of weights W = (w1, ..., wJ). Stations in the synthetic control are weighted to

closely mirror the treated station prior to treatment to create a control that matches the

pretreatment usage of station i using

Ŷit =
J∑

j=1

wjYjt. (2)

Ŷit is used to find the effect τ̂it of the end of the subsidy on station usage

τ̂it = Yit − Ŷit. (3)

Weights for the synthetic control are calculated using station usage and other station
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characteristics such as the number of ports, station type, unique users, the distance to

the interstate, and station density. If stations are weighted properly, the treated station

and the synthetic control should have similar station usage before the subsidy ended, as

is seen in Figure 5.22

The synthetic control approach estimates the end of the subsidy decreased average

usage for stations that became not free by 55%. This is very similar to the difference-

in-difference estimates and indicates there is probability limited bias in the difference-in-

difference price estimation.

4 Driver Choice Analysis

This section continues to explore the affects of station characteristics and price on driver

charging decisions using transaction-level charging data to estimate a mixed logit with

random coefficients. This complements the estimates from Section 3 and expands our

understanding of how stations characteristics and price affect driver charging decisions.

Section 4.1 discusses the specifics of the estimation, required assumptions, and population

level results. Section 4.2 calculates station and driver elasticities, and Section 4.3 explores

the accuracy of the model and alternative specifications for robustness. These results are

then used to construct counterfactual analysis in Section 5 which allow me to calculate

the value of the charging price subsidy and individual stations to drivers.

4.1 Mixed Logit

This section uses a mixed logit discrete choice model with random coefficients. Drivers

choose charging locations from a choice set of stations and the outside option, which are

differentiated by station characteristics and price. The random coefficients are normally

distributed across the driver population.

22Abadie (Forthcoming) and Bouttell et al. (2018) discuss synthetic control methods.
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Home charging makes the outside option an important component of the choice set.

Unfortunately, I am not able to directly observe out of network charging, but I can observe

how much each driver charges and how this changes when the charging subsidy ended.

While this does not demonstrate how much drivers are charging outside the network, it

does indicate how much charging moved outside the network as a result of the change in

subsidy. Because it is unlikely the price increase caused drivers to switch back to gasoline,

the difference in charging between years is used to determine the increase in charging

events each driver made outside the network. The number of charging events that moved

outside the network are events where the outside option was chosen. Including these

outside charging events, each driver is credited with the same number of charging events

in 2017 and 2018 and if a driver’s charging on the network decreased, charging outside

increased. The outside option is normalized to zero utility so if a driver has positive

utility from charging at any station on the network they would presumably choose a

network station, but if no station provides positive utility they would choose to charge

outside. While this approach does not account for all outside charging, it does capture

movement on and off the network between 2017 and 2018.

In addition to the outside option, the choice set of stations must be defined. The

naive approach would be to include all stations in the choice set. However, of the 284

charging stations on the Evergy network, most drivers visited only a few. While all the

drivers were able to find the location and prices of stations through an online application,

it is unlikely that all stations are truly in every driver’s choice set. It is more reasonable

to assume that drivers choose from a set of stations located at places they frequent.

Additionally, it is not possible with our computing resources, although they are

quite robust, to estimate the model using all 284 stations in every choice set. While it is

impossible to truly know all locations a driver is considering, the data does allow us to

observe where drivers are charging and the locations that are likely in their choice set.

The choice set is defined as all stations where each driver chose to charge more than one

time over the course of two years. Each choice set is specific to each driver and while
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it is possible that a driver may choose from a broader set of stations, it is unlikely that

stations where a driver never chose to charge more than once in two years time was a

serious consideration.

The process described above creates a unique choice set of stations for each of the

1134 drivers. The smallest choice set has 2 stations with the driver charging at only one

station on the network and the outside option. The largest choice set has 21 stations,

and the average choice set has 5.2 stations. The station choice sets make this estimation

different from the analysis in Section 3. Here the coefficients indicate the effect a charac-

teristic has on the probability that a driver will choose a particular station, conditional

on a station being in the driver’s choice set. Because the estimation is conditional on the

choice set, the effect of station characteristics are different from the results in Section 3.

If a driver choses to frequently visit a work location this will increase usage at the

station, but does not account for the number of people who use that station. If a station

is lightly used by a large number of people it may have high usage but may not have

high visit frequency, as is seen in Figure 6. Work and grocery stations both have a

positive effect on station usage, as is seen in Section 3, but grocery stations were used

by a large number of drivers, while work locations were often used by a small number of

drivers.23 68% of the driver choice sets contain a grocery station, but only 32% contain

a work station. Given that estimates are conditional on the choice set, grocery stations

could have less of a positive effect on an individual driver’s charging choice, but still have

relatively high usage overall.

The initial utility specification for the mixed logit is

uijt = αitpjt + βitXij + ϵijt, (4)

where α is the price coefficient for driver i at time t, and pjt indicates if station j is

23Grocery and shopping stations are statistically different from school, parking, and work stations
using the Mann-Whitney test at a 95% confidence interval.
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not free at time t. X are station characteristics for driver i and station j, and ϵ is the

error term. X contains characteristics that do not change across drivers such as the type

of charger and business classification as well as driver specific characteristics such as the

distance between the station and the driver’s home zip code.

Station characteristics that do not vary across drivers are similar to the variables

used in Section 3. Characteristics that are driver specific include the distance between

station j and driver i’s home and the average time driver i spends charging at station j.

The distance to the driver’s home indicates whether stations closer to the home or farther

away were preferred. The average length of time an individual charged at a station is

included because the length of time a driver is looking to charge may affect the choice.

Tables 5 and 6 show the summary of results from equation 4. The first set of columns

in Tables 5 and 6 include all 1134 drivers in the data set. The following columns of Table

5 show subsections of drivers based on zip code income. The second set of columns in

Table 5 include drivers who’s average zip code income is in the lowest income quartile for

EV drivers ($76,000 or less). The third set of columns includes drivers with zip codes in

the highest income quartile (greater than $118,000). The second set of columns in Table

6 includes subsections of drivers by the distance of the home location from downtown.

Column 2 of Table 6 includes drivers living in the quartile living nearest downtown

(less than 9 miles), and column 3 includes drivers who live in the quartile furthest from

downtown (more than 19 miles).

Allowing the coefficients to vary across driver’s choices allows us to better under-

stand how characteristics affect drivers differently. The coefficients are estimated using

100 random draws from a normal distribution for each driver’s decision with mean β and

variance σ. Price, distance to the driver’s home, grocery, and shopping all have statisti-

cally significant variance σ, which indicates these characteristics vary significantly across

drivers in the population while other characteristics such as work, parking garage, gro-

cery, medical stations, and station density, distance to downtown do not vary significantly

over the population.
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For all drivers, on average, price has a negative coefficient indicating a negative

effect on the probability a driver will visit a station. The regional characteristics such

as distance to downtown, station density, and distance to the interstate have a small

effect on the choice with average elasticities of only 0.1, 0.04, and -0.08 respectively. The

small effect of these variables is consistent with the results from Section 3. Work and

medical stations have a positive average elasticity of 0.63 and 0.29. Parking garage and

apartment stations have somewhat smaller positive effect with elasticities of 0.14 and 0.38

respectively, but the importance of apartment stations differs significantly across drivers.

Unlike the result in Section 3, grocery and shopping stations have a negative effect.

Grocery stations do not have a significant effect and shopping stations has a significant,

negative effect. This does differ from the results in Section 3 where both grocery and

shopping stations had a significant, positive effect on usage. Grocery and shopping sta-

tions have many more unique drivers per station than work stations which have relatively

few drivers per station, and 67% of the choice sets contain at least 1 grocery station. Gro-

cery stations may have a limited effect on the probability a specific driver will choose to

charge, but they serve many different drivers and are in many choice sets. Whereas,

work stations have a significant effect on driver’s probability of visiting a station. Work

stations may be used intensely by a smaller number of drivers, but grocery stations less

intensely by a larger number of drivers.

Columns 2 and 3 of Table 5, show that drivers in the lowest income quartile, on

average, are less reactive to price than high income drivers.24 This is opposite of what

is expected, but drivers with higher incomes may be more likely to have level 2 home

chargers or may drive vehicles with longer ranges, making them less dependent on public

charging. Also, price varies significantly across the drivers in both groups. It also appears

that high income drivers have more of a preference for work stations than other drivers.

Grocery has more of a negative effect on low income drivers. As seen in columns 2 and

3 of Table 6, price has less of an effect on drivers who live near downtown and more of

24Estimation is done in R using the mlogit package from Croissant (2021).
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an effect on drivers further away. This may be due to a lack of alternative charging for

drivers living in a downtown environment whereas drivers living outside the city may be

more likely to have home chargers. Similarly, drivers living further away from downtown

are more negatively affected by grocery and shopping stations relative to drivers who

live closer to the downtown area. However, drivers living further away have more of a

negative effect from level 2 chargers and may be more interested in the faster level 3

charging options.

4.2 Station and Individual Elasticities

The coefficients in Tables 5 and 6 are used to calculate the probability

Pijt(βit) =
eβ

′
itXijt∑

k e
β′
itXikt

. (5)

a driver will visit a specific station. The probability Pijt of station j being chosen by

individual i in time t is found using coefficients βit and characteristics Xijt from Section

4.1. The price elasticities are calculated with the individual price coefficients αit, price

pjt, and the probability of Pijt of choice j for individual i. The elasticity of station j for

driver i at time t is

∂Pijt

∂pjt

pjt
Pijt

= Eijtpjt = αitpjt(1− Pijt). (6)

Elasticities are used to find the average price elasticity for every station and individual

driver. Figure 7 shows the average price elasticity of each driver and station. There is

variation across drivers by driver zip code income and distance from downtown. Figure 7a

shows average price elasticities of each driver who live near to downtown(within 9 miles)

and drivers who live further away from downtown(greater than 19 miles), and there is a

clear difference for drivers who live close to downtown and those who live farther away.

Drivers who live near downtown may have less access to home charging, making them less

responsive to charging price. Similarly, Figure 7b shows the average elasticity for drivers

who live in the lowest and highest income zip codes. Contrary to expectations, high
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income individuals are more elastic than lower income drivers. These differences may be

due to systematic differences in access to home charging and longer driving ranges for

more expensive EVs.

The average elasticities of stations by business classification can be seen in Figure

7c. Overall the range of average station elasticities vary between 0 and -3 with an average

near -2.5. However, this is not unexpected due to the nature of the outside option in

EV charging. When elasticities are broken down by station type as seen in Figure 7c,

there are differences in the distribution of elasticities across station types. Work and

parking garage stations are less elastic, and using a Mann-Whitney test the distribution

of work and parking garage stations are different from grocery stations at a significance

level of 0.01, but other categories are not significant, which is consistent with the results

in Section 3.

4.3 Estimation Accuracy and Robustness

This section looks at the accuracy of the model estimated in Section 4.1 and estimates

alternative specifications for robustness. Accuracy of the mixed logit comes from the

model’s ability to predict movement of charging in and outside the network and accurately

predict the station the driver chose. For robustness, alternative definitions of the choice

set are estimated.

4.3.1 Accuracy

First, I look at the ability of the model to predict movement in and out of the network.

When the coefficients in Tables 5 and 6 are applied to the data, the choice with the highest

calculated utility is the choice the model predicts the driver will choose. The estimates

from equation 4 correctly predict the driver’s choice 58% of the time, but correctly predict

if the driver will choose to charge at the outside option 85% of the time. The predicted

movement of charging in and outside of the network can be seen in Figure 8a.
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To further test the accuracy of the model, the data is split with a 75% to 25% train-

test split with data stratified by user and year. Coefficients are estimated on the training

portion of the data, and prediction accuracy is tested on the test portion of the data.

Using this approach, the model predicts the correct station the driver will choose with an

accuracy of 48%, and accurately predicts when the outside option will be chosen 72% of

the time. The movement of charging in and out of the network predicted in the stratified

estimates is seen in Figure 8b.

To see how accurately the model selects the correct station, I look at how closely the

model predicts the total share of visits at each station by business classification. This

can be seen in Table 7. In reality 9% of visits occurred at parking garage stations, and

the model predicts parking garage visits are 11% of visits. The estimates predict the

choice of a work station is 25% of the visits when they are actually 15% of visits, and

underrepresents grocery and shopping stations.

4.3.2 Robustness of Choice Set

To check for the robustness of the choice set specification, Table 8 compares the estimates

from Table 5 with the alternative specifications of the choice set, since the true choice set

for each driver is unknown. Table 8 shows estimates for alternative specifications of the

choice set. The first group of columns contains the original specification from Table 5

where each driver’s choice set includes all stations the driver visited more than one time

over two years. The second group of columns expands the the choice set to include any

station the driver ever visited. The third group of columns shrinks the choice set and

only includes stations the driver visited more than twice.

The price estimates across all specifications of the choice set are relatively consist.

Similarly, location characteristics are very similar across all specifications. Some of the

business classification change as the size of the sample decreases, which is to be expected.

As the number of alternatives changes, the frequency of each alternative occurring in
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driver choice sets changes, which may affect the coefficients estimated.

5 Counterfactuals and Policy Recommendations

This section uses the results from in Section 4 to perform two counterfactuals that have

important policy implications. This section performs two counterfactuals. The first looks

at the effects of the charging price subsidies on driver consumer surplus by comparing the

actual consumer surplus observed in 2018 with a “counterfactual” surplus where charging

prices remained zero. The second counterfactual calculates the dollar value each station

provides drivers on the network by comparing total driver consumer surplus with and

without each station.

5.0.1 Station Price Counterfactual

The charging price subsidy has been implemented in may different locations across the

country without a good understanding of how it benefits drivers or its implications for

future station congestion. While overall station usage is not beyond the charging capacity

of the network in Kansas City in 2017 and 2018, Zhou and Li (2018) discusses problems

of future charging capacity constraints for EV adoption. In light of these concerns, the

counterfactual explores the value charging subsidies provide to drivers for every dollar

spent on subsidies.

The counterfactual calculates the additional consumer surplus the charging subsidy

provides for drivers on the Evergy network using the data and coefficients estimated in

Section 4 by artificially setting the charging price in 2018 to zero. The consumer surplus

of the artificial state of the world in 2018 where charging prices are zero is compared to

the observed consumer surplus where the subsidy ended.

Figure 9 shows the number of actual, predicted, and counterfactual visits that occur

on the network. The solid blue line show the actual visits that occur and the orange
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dotted line shows the number of visits the model predicts would occur in the real world.

The green dotted line shows the number of visits the model predicts would occur in the

“counterfactual” world where prices remained zero in 2018. The average number of visits

per month in 2017 is shown by the red dotted line.

The dollar change in consumer surplus (CS) created for drivers by continuing the

charging subsidy is calculated by

∆CS =

[
ln

∑
j

e−αitp
′
jt+βitXij − ln

∑
j

e−αitpjt+βitXij

]
1

αit

(7)

where p′jt is zero for all stations and pjt are the prices observed in 2018. The dollar value

of the surplus is obtained by dividing by the price coefficient α.

Table 9 shows the consumer surplus for drivers in the observed state of the world,

the “counterfactual” state of the world, and the difference between them. The total

surplus for drivers in 2018 when prices artificially remain zero is $151,816 for the 1,146

drivers. When the subsidy ends the total surplus falls to $129,752. Maintaining the

charging subsidy would increase the CS by about 17% or $22,064 across 1,142 drivers.

The foregone costs of continuing the subsidy in 2018 is total charging revenue in 2018.

Total revenue from charging in 2018 was $27,341, and for every dollar in forgone revenue

the subsidy generates $0.81 in driver consumer surplus.

Station subsidies need to be assessed accounting for costs and benefits, of the subsidy,

potential long run benefits, and the behavior this subsidy incentivizes. The return to

drivers from charging subsidies is less than the cost of implementing the subsidy. While

this subsidy benefits EV drivers in the short term, it is not clear how this subsidy increases

EV adoption in the future. Last, this subsidy incentivizes EV drivers to increase use of

network stations, as is seen in Figure 9. This incentive may lead to station congestion

and station critical mass difficulties as EV adoption grows, as is discussed in Zhou and

Li (2018).
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5.0.2 Station Counterfactuals

In addition to understanding how charging subsidies benefit drivers, the estimates from

Section 4 also allow me to measure how drivers value the existence of stations on the

network. Springel (2017) and Li et al. (2017) found that subsidizing the building of new

stations is more cost effective than subsidizing the sale of electric vehicles. However,

their analysis does not differentiate between stations or locations. This counterfactual

calculates the value each station on the network provides to drivers over 6 months, and

see how station characteristics affect station value.

Station value is calculated using the data and estimates from Section 4 to calculate

the value of each station by individually removing them from the choice set to calculate

their individual affect on consumer surplus. Consumer surplus is calculated as

∆CS =

[
ln

∑
j

e−αitpjt+βitXij − ln
∑
j ̸=n

e−αitpjt+βitXij

]
1

αit

(8)

284 times, removing one station at a time. The loss in surplus from removing an exist-

ing station allows us to find the total value each station provides to all the drivers on

the network. Because prices affect driver preferences for stations, this counterfactual is

conducted using only 2017 data when all prices were zero.

The total value each station provides to all drivers from July 1, 2017 to December

31, 2017 varies from less than a dollar to more than 600 dollars. Figure 10a shows the

histogram of station values and Figure 10b shows station values by business classification.

While all groups have some low value stations, work, grocery, and parking garage stations

have more stations with the high values, which are statistically different from apartment,

entertainment, hotel, and industrial stations using a Mann-Whitney test at a significance

level of 0.05.

Table 10 shows the number of stations by business classification in the top quartile of

station value, which includes any station with a value of greater than $144. Overall, 5 of
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the L3 stations exist in the top quartile, and grocery, work, and parking garage stations

have the highest share of stations in this group while industrial, entertainment, and hotel

stations have very few high value stations. Even though grocery and work stations serve

a different numbers of unique drivers, they both remain high value stations.

Station value has implications for future endeavors to build charging stations. While

building EV stations has been shown to increases adoption, not all stations are of equal

value to drivers. Stations located at work, parking garage, grocery, and shopping stations

provide the greatest value to drivers, which is consistent with the results from Section

3. While an area may have a large number of charging stations, some stations created

almost no value to drivers, and not accounting for differences in station value to drivers

could hinder the effectiveness of future station development.

5.1 Policy Implications

This paper has three policy implications for government subsidies and vehicle manufac-

turers. Charging station prices are an effective way to reduce future station congestion,

charging subsidies may not be the most beneficial form of subsidy to drivers, and fu-

ture station development should account for differences in station characteristics. Failure

to account for driver price elasticity could lead to unnecessary congestion at charging

stations and provide little benefit to drivers. A lack of understanding driver charging

preferences can result in inefficient investment in EV charging.

First, price is an effective way to control station congestion and capacity constraints.

Zhou and Li (2018) discusses problems of limited capacity for future charging in cities.

This paper shows that drivers are very responsive to charging prices the use of charging

prices may be a realistic option for decreasing future charging capacity constraints. As EV

adoption continues to increase price subsidies my hinder adoption by increasing station

congestion.

Second, subsiding EV charging may not be the most cost effective method for pro-
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moting EVs. Subsidizing EV charging costs more to the provider of the subsidy than it

provides to the consumer. Alternative methods which eliminate this loss, such as subsi-

dies on vehicle registration, reduced sales price, and investment in charging infrastructure

may be of greater value to drivers. While the cost of station subsidies is relatively small

over a six months, unlike developing more charging stations, this incentive does not build

infrastructure for future EV drivers.

Third, future programs that invest in the development of EV charging should account

for differences in driver charging preferences. EV charging stations are not created equal

in the benefits they provide to drivers, and station investment should focus on building

stations in locations where they will be most valued. Additionally, stations may be valued

in different ways. Some stations serve a large population of drivers while others may create

a significant benefit for only a few. Understanding these differences and implementing

them is crucial for new station placement.

6 Conclusion

This paper looks at the effects of station characteristics and charging price subsidies on

EV charging. I found that the elimination of the charging price subsidy decreased station

charging on average by 55%, but the decrease was not uniform across all stations. The

type of businesses near a station affect both the price elasticity of the station and total

usage at a station. Stations located near grocery stores, work locations, and parking

garages have the highest usage, and work and parking garage locations are less price

elastic that other types of stations. Future policy approaches to advance EV adoption

by governments or vehicle manufacturers should account for the important effects station

characteristics have on usage and value to driver when expanding EV charging networks.

Subsidizing charging prices may not be the most effective method for incentivizing EV

adoption and may have a negative effect of on station congestion. Future work on the

importance of station characteristics needs to be done to better understand differences in
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driver preference for level 2 chargers versus level 3 chargers and the potential differences

this may have on EV adoption. Additionally, the market structure of EV charging needs

to be better understood to further station development.
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Table 1: Driver Descriptive Statistics

# Drivers: 1094 mean std min 25% 50% 75% max

# Visits 72.00 89.80 1.00 10.00 34.0 101.00 530.00

Total KWHs Charged 580.60 864.70 0.40 50.60 175.7 839.80 6962.40

Average Distance to Station (miles) 10.40 10.60 0.20 4.60 7.8 12.90 122.70

# Unique Stations Visited 8.00 8.20 1.00 3.00 6.0 10.00 160.00

Average Charging Fee (2018) 1.59 1.46 0.02 0.68 1.3 2.04 22.02

Note: This table shows descriptive statistics of individual driver’s charging usage. Source: Author’s
calculation.
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Table 2: Station Descriptive Statistics by Business Classification

All Grocery Work Industrial Apartment Parking Shopping Hotel
Visits 283.8 425.1 345.7 195.6 140.5 395.7 509.8 100.6

(327.5) (349.5) (364.5) (274.6) (198.4) (414.7) (336.8) (130.0)

KWHs Per Visit 7.4 5.5 8 7.1 6.7 8.8 6.9 7.7
(3.9) (3.5) (3.6) (3.5) (3.7) (2.6) (2.5) (3.0)

Total KWHs 2288.2 2560.8 2831.6 1795.3 1258.7 3743 3585.3 1019.3
(2968.1) (2944.8) (3043.9) (2870.9) (1778.0) (4195.3) (2427.4) (1938.8)

Visit Length (min) 104.1 51.4 128 142.6 103.6 123.3 91.7 106.7
(54.8) (27.5) (46.4) (66.1) (58.1) (45.2) (35.5) (35.4)

Unique Drivers 31.4 59.2 22.2 5.1 11.7 37.2 77.8 23.1
(36.0) (34.3) (31.5) (4.4) (17.2) (35.8) (44.5) (16.6)

Visit Frequency 14.4 7 25.5 34.2 11.9 21.8 7.3 6.8
(23.4) (4.5) (34.3) (41.5) (16.7) (31.0) (4.2) (13.4)

# Stations 278 50 42 25 18 24 14 9
Note: This table shows average descriptive statics of station usage by business type from July 1, 2017
to December 31, 2017 when all prices were zero. Standard errors are in parentheses. Source: Author’s
calculation.
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Table 3: Stations that Remain Free and Stations that Become Not Free

Remained Free Become Not Free

2017 2018 %∆ P Values 2017 2018 %∆ P Values
All Stations

Visits 169.7 163.4 -3.7% 0.4 175.2 88.1 -49.7% 1.13e-06

Total KWHs 1179.6 1207.6 2.4% 0.3 1403.7 690.7 -50.8% 1.93e-06

Visit Frequency 8.8 11.4 29.5% 0.07 8.5 7.3 -14.1% 1.22e-15

# Unique Drivers 30.4 27.7 -8.9% 0.3 33.8 23.0 -32.0% 7.89e-04

Charging Time (Min) 103.1 108.3 5.0% 1.30e-18 110.7 116.0 4.8% 7.52e-24

Customers Retained 11.1 8.2

Customers Left 11.2 14.8

New Customers 8.2 6.4
Note: The figure shows the percent change in average station usage for stations that remain free
and stations that become not free. Source: Author’s calculation.
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Table 4: Differences-in-Difference Results

(1) (2) (3)
Difference-in-Difference Estimator

NOTFREE × T −0.812∗∗∗ −0.891∗∗∗ −0.889∗∗∗

(0.098) (0.116) (0.118)

Site Variables
Level 2 −2.917∗∗∗

(0.191)

Entertainment −1.135∗∗∗

(0.200)

Apartment −1.732∗∗∗

(0.332)

Hotel −1.419∗∗∗

(0.359)

Medicine −0.425
(0.257)

Other −0.468∗

(0.221)

Parking Garage −0.447
(0.337)

School −0.987∗

(0.383)

Shopping 0.311
(0.264)

Work −0.472
(0.245)

Industrial Work −0.949∗

(0.372)

Spatial Variables
ln(EV Station Density 1mi) 0.170 0.088

(0.129) (0.087)

ln(Total EVs in 10 mi) 0.383∗∗∗ 0.365∗∗∗

(0.094) (0.046)

ln(Population Density) 0.034
(0.105)

ln(Distance to Downtown) 0.039
(0.159)

ln(Distance to Interstate) 0.200
(0.150)

Control 3.629∗∗∗ 0.292 0.153
(0.049) (0.211) (0.184)

Constant 3.192∗∗∗ −0.632 3.631∗∗∗

(0.047) (0.853) (0.405)

Month Fixed Effects Yes Yes Yes

Station Fixed Effects Yes No No

Observations 3,324 3,324 3,324
R2 0.869 0.165 0.436
Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Source: Author’s calculation.
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Table 5: Low and High Income Driver Mixed Logit Results

All Stations Low Income High Income
mean var mean var mean var
β σ β σ β σ

Price -2.077*** 2.272*** -1.922*** 1.338*** -3.685*** 6.843***
(0.033) (0.076) (0.051) (0.13) (0.208) (0.515)

Work 0.823*** 0.0160 -0.0120 0.0170 0.828*** -0.0010
(0.017) (0.261) (0.037) (0.682) (0.044) (0.427)

Grocery -0.0030 -0.0160 -0.139*** -0.0080 0.211*** -0.1760
(0.013) (0.23) (0.027) (0.476) (0.042) (0.349)

Parking 0.175*** 0.0260 0.66*** -0.0360 -0.54*** 0.010
(0.024) (0.31) (0.041) (0.526) (0.067) (0.655)

Shopping -0.661*** -1.122*** -0.506*** -0.935*** 0.137*** -0.0050
(0.052) (0.085) (0.074) (0.143) (0.041) (0.487)

Apartment 0.442*** 0.721*** 1.068*** -0.0650 -26.17* -19.473*
(0.052) (0.139) (0.046) (0.505) (11.564) (7.653)

Medicine 0.356*** -0.0020 0.463*** -0.0050 0.616*** 0.0160
(0.021) (0.246) (0.048) (0.592) (0.044) (0.425)

Distance to Driver’s Home -0.029*** 0.016*** -0.011*** 0.00 -0.082*** 0.010
(0.001) (0.002) (0.001) (0.021) (0.003) (0.013)

# of Ports -0.006*** -0.025*** 0.018***
(0.001) (0.002) (0.002)

Distance to Downtown 0.011*** -0.0020 0.029*** -0.00 0.009** 0.046***
(0.001) (0.005) (0.001) (0.009) (0.003) (0.004)

Station Density 0.007*** 0.00 -0.0020 0.00 0.019*** -0.0010
(0.001) (0.003) (0.001) (0.004) (0.002) (0.006)

Level 2 -0.658*** -0.636*** -0.763***
(0.016) (0.033) (0.04)

Av. Charging Time 0.01*** 0.009*** 0.01*** 0.012*** 0.013*** 0.012***
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Distance to Interstate -0.028*** 0.00 -0.056*** -0.00 -0.082*** -0.063*
(0.003) (0.013) (0.005) (0.019) (0.009) (0.025)

Log-Likelihood: -162730 -42233 -31723
Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Source: Author’s calculation.
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Table 6: Urban and Rural Driver Mixed Logit Results

All Stations Near Downtown Away from Downtown
mean var mean var mean var
β σ β σ β σ

Price -2.077*** 2.272*** -1.433*** 0.607*** -2.675*** 2.556***
(0.033) (0.076) (0.038) (0.181) (0.095) (0.192)

Work 0.823*** 0.0160 0.547*** 0.0820 1.066*** -0.00
(0.017) (0.261) (0.035) (0.464) (0.051) (1.208)

Grocery -0.0030 -0.0160 0.535*** 0.449** -0.0460 0.972***
(0.013) (0.23) (0.041) (0.17) (0.039) (0.117)

Parking 0.175*** 0.0260 0.807*** 0.436* -0.907*** -0.010
(0.024) (0.31) (0.051) (0.208) (0.099) (1.716)

Shopping -0.661*** -1.122*** 0.176** -0.3850 -1.654*** 1.736***
(0.052) (0.085) (0.054) (0.238) (0.16) (0.19)

Apartment 0.442*** 0.721*** 0.73*** 0.845*** -0.738*** 0.1690
(0.052) (0.139) (0.098) (0.243) (0.154) (1.223)

Medicine 0.356*** -0.0020 1.007*** -0.2030 -0.482*** -0.0140
(0.021) (0.246) (0.061) (0.455) (0.06) (0.708)

Distance to Driver’s Home -0.029*** 0.016*** -0.114*** 0.178*** -0.009*** 0.00
(0.001) (0.002) (0.004) (0.006) (0.001) (0.023)

# of Ports -0.006*** -0.021*** -0.013***
(0.001) (0.002) (0.002)

Distance to Downtown 0.011*** -0.0020 -0.043*** 0.0060 0.019*** 0.00
(0.001) (0.005) (0.004) (0.017) (0.001) (0.009)

Station Density 0.007*** 0.00 -0.018*** -0.023*** 0.0020 0.00
(0.001) (0.003) (0.001) (0.003) (0.003) (0.016)

Level 2 -0.658*** 0.075* -0.702***
(0.016) (0.036) (0.042)

Av. Charging Time 0.01*** 0.009*** 0.011*** -0.01*** 0.013*** -0.003***
(0.0) (0.0) (0.0) (0.0) (0.0) (0.001)

Distance to Interstate -0.028*** 0.00 -0.096*** 0.0020 -0.028*** 0.00
(0.003) (0.013) (0.008) (0.036) (0.005) (0.032)

Log-Likelihood: -162730 -44672 -21781
Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Source: Author’s calculation.
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Table 7: Predicted Versus Actual Visits

Business Type Predicted Stratified Share Actual Share
Parking 0.11 0.09
Work 0.25 0.15
Other 0.53 0.48
Apartment 0.03 0.02
Shopping 0.01 0.06
Grocery 0.06 0.20

Note: The first columns shows the share of visits in each group pre-
dicted by the stratified data. The actual share of visits that occur in
each group appear in the second column. Source: Author’s calcula-
tion.
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Table 8: Robustness Estimates

Original Results Minus Zero Minus Two
mean var mean var mean var
β σ β σ β σ

Price -2.077*** 2.272*** -1.983*** 2.102*** -2.145*** 2.198***
(0.033) (0.076) (0.033) (0.08) (0.035) (0.077)

Work 0.823*** 0.0160 0.841*** 0.0070 0.861*** 0.0160
(0.017) (0.261) (0.015) (0.244) (0.019) (0.302)

Grocery -0.0030 -0.0160 0.091*** 0.010 0.03* 0.0070
(0.013) (0.23) (0.012) (0.22) (0.015) (0.257)

Parking 0.175*** 0.0260 0.166*** 0.0050 0.279*** -0.0020
(0.024) (0.31) (0.022) (0.279) (0.027) (0.361)

Shopping -0.661*** -1.122*** -0.705*** 1.306*** -0.304*** -0.788***
(0.052) (0.085) (0.065) (0.09) (0.043) (0.099)

Apartment 0.442*** 0.721*** 0.642*** 0.0470 0.595*** 0.703***
(0.052) (0.139) (0.029) (0.342) (0.056) (0.17)

Medicine 0.356*** -0.0020 0.554*** 0.0030 0.383*** -0.0030
(0.021) (0.246) (0.019) (0.222) (0.024) (0.276)

Distance to Driver’s Home -0.029*** 0.016*** -0.05*** 0.039*** -0.024*** 0.018***
(0.001) (0.002) (0.001) (0.001) (0.001) (0.002)

# of Ports -0.006*** -0.006*** 0.003**
(0.001) (0.001) (0.001)

Distance to Downtown 0.011*** -0.0020 0.02*** -0.0040 0.007*** 0.00
(0.001) (0.005) (0.001) (0.004) (0.001) (0.006)

Station Density 0.007*** 0.00 0.003*** 0.0010 0.004*** 0.00
(0.001) (0.003) (0.001) (0.002) (0.001) (0.003)

Level.2 -0.658*** -0.894*** -0.569***
(0.016) (0.015) (0.018)

Av. Charging Time 0.01*** 0.009*** 0.009*** -0.008*** 0.01*** 0.01***
(0.0) (0.0) (0.0) (0.0) (0.0) (0.0)

Distance to Interstate -0.028*** 0.00 -0.061*** 0.0020 -0.011*** -0.0010
(0.003) (0.013) (0.003) (0.012) (0.003) (0.015)

Log-Likelihood: -162730 -190440 -126280
Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001
Source: Author’s calculation.
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Table 9: Price Counterfactuals

Consumer Surplus when Price=0 $151,816
Consumer Surplus when Price>0 $129,752
∆ Consumer Surplus $22,064
Note: This shows the observed consumer surplus
and the counterfactual consumer surplus calculated
from equation 7. Source: Author’s calculation.
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Table 10: Stations with Values in the Top Quartile

Work Parking Grocery Shopping Apartment Entertainment Hotel
Q4 L3 Stations 0 1 4.00 0 0 0 0
Q4 L2 Stations 19 8 13 4 3 2 0
All Stations 42 23 50 14 15 23 8
Q4 Share 0.45 0.39 0.34 0.29 0.2 0.09 0
Note: This shows the stations with the highest values to drivers. Source: Author’s calculation.
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Figure 1: Charging Network Usage (MWH) Before and After the Subsidy Ended

Note: This figure shows total MWHs used at all stations on the
network over time for stations that remained free in 2018 and sta-
tions that became not free. The vertical red line indicates when
the subsidy ended and charging became not free. Source: Author’s
calculation.

43



Figure 2: Total Usage (KWH) by Station Business Classification and Location 2017 and 2018

(a) Shopping Stations (b) Grocery Stations (c) <9 mi from Downtown

(d) Parking Stations (e) Work Stations (f) >20 mi from Downtown

Note: These figures show total usage in 2017 and 2018 by station business classification and
distance from downtown for stations that remain free and stations that become not free. Source:
Author’s calculation.
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Figure 3: EV Stations in Kansas City

Note: This is a map of the Kansas City metro area with sta-
tions that remain free are shown as stars and stations that
became not free are shown as black triangles. Source: Au-
thor’s calculation.
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Figure 4: Interaction Coefficients

Note: This Figure shows coefficients for interactions between the
difference-in-difference estimator and business types. The bars indicates
95% confidence intervals and ∗ indicates the change is statistically signif-
icant. Source: Author’s calculation.
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Figure 5: Synthetic Control

Note: This figure shows the actual usage and the synthetic
control. Source: Author’s calculation.

47



Figure 6: Unique # of Drivers at Each Station by Business Classification

Note: This figure shows distributions of the number
of unique drivers for each station by business classi-
fication. Source: Author’s calculation.
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Figure 7: Driver and Station Elasticities

(a) Drivers by Distance to Downtown (b) Drivers by Income

(c) Stations by Business Classification

Note: Figures a and b show individual average elasticity of drivers by drivers home location
and income. Figure (a) looks at driver who live near downtown (less than 9 miles) and live
far away from downtown (more than 20 miles). Figure (b) separates drivers by income: low
income drivers live in zip codes with an average income of less than $76,000 and high income
drivers live in zip codes with an average income of more than $118,000. Figure (c) shows
average station elasticity by business classification. Source: Author’s calculation.
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Figure 8: Network Visits Actual and Predicted

(a) Original Estimates (b) Stratified Estimates

Note: Figure (a) shows actual charging visits on the network with the solid blue line and
the number of visits predicted by the model with the orange dotted line. Figure (b) shows
actual visits with the blue dotted line and shows the predicted visits by the stratified data with
the orange dotted line. The vertical lines indicate the end of the subsidy. Source: Author’s
calculation.
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Figure 9: Network Visits: Actual, Predicted, and Counterfactual

Note: The solid blue line shows actual visits on the net-
work. The orange dotted line shows predicted visits. The
green dotted line shows predicted visits if prices had re-
mained zero. The red dotted line shows the average num-
ber of visits in 2017. Source: Author’s calculation.
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Figure 10: Individual Station Contribution to Consumer Surplus

(a) All Stations (b) By Station Type

Note: Figure (a) shows the histogram of station values. Figure (b) shows the distribution of
station values by business classification. Source: Author’s calculation.
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